技術領袖培訓班 課程大綱

  • 首頁
  • 技術領袖培訓班 課程大綱
週別 主題課程 內容大綱 實作課程
1 課程介紹與人工智慧概觀 Python 快速上手與爬蟲實務
2 機率與統計 1. 敘述性統計、機率分布與抽樣方法 2. 參數估計與假設檢定 3. 無母數統計 4. 迴歸分析 Python 資料處理、分析與視覺化
3 機器學習基礎與演算法 1. 機器學系概論 2. 迴歸與維度縮減 3. 非監督式學習方法 機器學習實作 (一)
4 機器學習基礎與演算法 1. 監督式學習方法 (SVM, decision tree, random forest, etc.) 2. 學習理論、泛化與特徵重要性 機器學習實作 (二)
5 深度學習理論入門 1. 深度學習理論基礎:backpropagation, stochastic gradient descent, activation functions 2. 神經網路校調:hyperparameter tuning, regularization and optimization 深度學習基礎實務、Tensorflow 程式設計與多層感知器 (MLP)
6 深度學習理論入門 1. 訓練優化技巧 2. 卷積神經網路 3. 卷積過濾器與影像資料處理 4. Data augmentation 卷積神經網路 (CNN) 與遷移學習 (Transfer learning) 實作
7 深度學習於電腦視覺之應用 1. 經典神經網路比較:VGG, ResNet & DenseNet 2. 深度學習於電腦視覺之應用與案例 進階卷積神經網路於電腦視覺之應用
8 深度學習於自然語言處理 (Natural Language Processing, NLP) 深度學習於 1. 聊天機器人 (chatbot) 2. 情緒分析 (sentiment analysis) 3. 文字摘要 (text summarization) 自然語言處理與文字探勘 (NLP)
9 深度學習理論:遞迴神經網路 (Recurrent Neural Network, RNN) 序列資料與遞迴神經網路基礎 1. GRU and LSTM 2. 時序資料處理與預測性維護 3. 自然語言處理與音頻資料處理 遞迴神經網路 (RNN) 實作:情感分析與新聞標題產生
期中考
10-15 專題實作與讀書會分享 專題實作
16 結業典禮 / 成果發表
  • 主辦暨執行單位:
    財團法人台灣人工智慧學校基金會
  • 協辦單位:
    中央研究院資訊科學研究所、中央研究院資訊科技創新研究中心
  • 捐助企業:
    台塑企業、奇美實業、英業達集團、義隆電子、聯發科技、友達光電、新光人壽-新壽管理維護